3D Object Recognition from Range Images using Local Feature Histograms
نویسندگان
چکیده
This paper explores a view-based approach to recognize free-form objects in range images. We are using a set of local features that are easy to calculate and robust to partial occlusions. By combining those features in a multidimensional histogram, we can obtain highly discriminant classifiers without the need for segmentation. Recognition is performed using either histogram matching or a probabilistic recognition algorithm. We compare the performance of both methods in the presence of occlusions and test the system on a database of almost 2000 full-sphere views of 30 free-form objects. The system achieves a recognition accuracy above 93% on ideal images, and of 89% with 20% occlusion.
منابع مشابه
A novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملThe 16th Meeting on Image Recognition and Understanding RGB-D based 3D-Object Recognition by LLC using Depth Spatial Pyramid
Recently, high-accuracy RGB-D cameras are commertially available, which are capable of providing high quality three dimension information (color and depth). In this paper, we propose an object recognition method where the techniques of object recognition in 2D are extended to 3D. Recent image classification systems mainly consist of the following three parts: feature extraction using scaleinvar...
متن کاملLocal Feature Histograms for Object Recognition from Range Images
In this paper, we explore the use of local feature histograms for view-based recognition of free-form objects from range images. Our approach uses a set of local features that are easy to calculate and robust to partial occlusions. By combining them in a multidimensional histogram, we can obtain highly discriminative classi ers without having to solve a segmentation problem. The system achieves...
متن کاملGeneric 3D Object Recognition from Time-of-Flight Images using Boosted Combined Shape Features
Very few research is done to deal with the problem of generic object recognition from range images. With the upcoming technique of Time-of-Flight cameras (TOF), for example the PMD-cameras, range images can be acquired in real-time and thus recorded range data can be used for generic object recognition. This paper presents a model for generic recognition of 3D objects from TOF images. The main ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001